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Abstract 

This paper presents a speech enhancement system that enables a comfortable communication inside an automobile. 
A couple of novel concepts are proposed in an effort to improve two major building blocks in the existing speech 
enhancement systems: a voice activity detector (VAD) and a noise filtering algorithm. The proposed VAD classifies a 
given data frame as speech or noise at each frequency, enabling the frequency-wise updates of noise statistics and 
thereby improving the effectiveness of the noise filtering algorithms by providing more up-to-date noise statistics. The 
celebrated Wiener filter is adopted in this paper as the accompanying noise filtering algorithm, which results in 
significant noise suppression. Yet, the musical noise present in most Wiener filter-based systems prompts the idea of 
applying the Wiener filter in the Mel-scale in which the human auditory system responds to the external stimulation. It 
turns out that the Mel-scale Wiener filter creates some masking effects and thereby reduces musical noise significantly, 
leading to smooth transition between data frames.
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-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

1. Introduction 

An automobile has become one of the most com-on 
and accessible transportation media. Accordingly, the 
time spent in an automobile has been steadily 
increasing. As a result, the comfort level during the 
passenger-to-passenger conversation or dialogue via a 
cellular phone in an automobile cabin has emerged as 
one of the benchmark criteria in evaluating the 
performance of an automobile. Therefore, the auto-
obile manufacturers have been putting significant 
efforts to reduce the noise in the automobile interior 
(Kim and Kim, 2005; Oh and Cha, 2000). 

To reflect on its importance, various approaches 

have been proposed for speech enhancement up until 
now. The following techniques summarize the speech 
enhancement systems in their simplest forms (em-
ploying a single microphone only), although the list is 
not meant to be exhaustive: comb filtering, noise 
masking, filter-model-based approach, enhancement-
by-synthesis, statistical model-based approach, spec-
tral subtraction, etc. (Rogan, 1998; Malah and Cox, 
1982; Van-Compernolle, 1989; Deller et al., 1993). 
The comb filtering picks out the periodic components 
of the voiced speech. As a result, its success is limited 
when dealing with the unvoiced speech, which often 
degrades the intelligibility. The noise masking masks 
certain sounds by providing background noise floor. 
Yet, noise masking performs poorly at low signal-to-
noise ratio (SNR) since it does not eliminate the 
existing sounds (Rogan, 1998). In the filter-based app- 
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roach, the speech is modeled as the output of a linear 
filter, typically as an autoregressive (AR) process 
whose parameters are estimated from a noisy speech. 
However, the filter-based approach provides en-
hancement in proportion to the quality of the model, 
which may often be quite poor (Rogan, 1998; Deller 
et al., 1993). The enhancement-by-synthesis first ex-
tracts clean speech parameters from the noisy obser-
vation, and synthesizes the enhanced speech from the 
estimated speech parameters. The main drawback of 
the enhancement-by-synthesis is that its performance 
does not improve gracefully as SNR changes. The 
statistical model-based technique first builds the 
statistical models of speech and noise and then 
minimizes the expected value of the distortion 
measure between the clean and estimated speeches. 
Hidden Markov Model (HMM) is generally used for 
speech model, which is difficult to implement on-line 
due to its complexity. In comparison to the afore-
mentioned methodologies, the spectral subtraction 
technique stands out by virtue of its simplicity and 
relatively good performance. The primary assumption 
is that the noise and the speech signal are uncorrelated 
and, accordingly, the power spectrum of noisy speech 
is simply a sum of speech and noise power spectra. 
As a result, the speech power spectrum can be 
obtained by subtracting the noise power spectrum 
from the whole power spectrum (of noisy speech). 
The Wiener filter is similar to the spectral subtraction 
technique but statistically optimal in that it minimizes 
the mean squared error of the speech estimate. This 
paper builds on the framework of the Wiener filtering 
and improves its performance by interjecting some 
novel ideas, about which more will be said later. The 
effectiveness of the spectral subtraction and Wiener 
filtering is determined by two factors: 1) how well the 
‘so-called’ musical noise is suppressed 2) how often 
the noise power spectrum is updated to provide most 
up-to-date noise statistics. 

The musical noise sprouts from the inaccurate 
estimates of noise power spectrum, which tends to 
exhibit increasing variances. The conventional Wie-
ner filtering algorithms adopt such concepts as the 
overestimation factor and the spectral floor as re-
medies for perceptually annoying musical noise 
(Berouti, et al., 1979; Boll, 1979). Although they 
mitigate the musical noise to certain extent, the 
conventional remedies ceases to be effective at low 
signal-to-noise ratio (SNR) due to the increasing 
speech distortion. This paper proposes that the Wiener 

filtering is performed in the Mel-scale. The power 
spectral estimates (noise and speech) are smoothed 
over adjacent frequency bins (Mel-filter bandwidth at 
the frequency of interest, to be more specific). It turns 
out that the human auditory system responds to the 
equal frequency difference in a gradually less sensi-
tive manner as the frequency is increased. As a result, 
without incurring any noticeable speech distortion, 
the extra smoothing over adjacent frequency bins 
significantly reduces the variances of noise power 
spectral estimates (the root cause of the musical 
noise), which leads to smoother transition from frame 
to frame and subsequently much lower musical noise. 

The existing speech enhancement systems provide 
most up-to-date noise statistics whenever a non-
speech (i.e., noise) frame is detected (Martin, 1994). 
From the perspective of time-domain approaches, it 
seems impossible to provide more up-to-date noise 
statistics. The frequency domain perspective yet sheds 
light on a still better update scheme: frequency-bin-
wise update of noise statistics. The proposed idea 
stems from the observation that even a speech frame 
often contains frequency bins with pre-dominant 
noise components. The resulting voice activity de-
tector (VAD) is readily implemented and compu-
tationally efficient since it operates as the level of 
each frequency bin. Equipped with the Mel-scale 
Wiener filtering and the novel VAD, the proposed 
system has potential to enhance the quality of speech 
to great extent. The experimental results show that the 
speech quality is much improved without distorting 
speech in any noticeable manner. 

This paper is organized as follows. Section 2 
briefly introduces an existing VAD and an existing 
Wiener filter. In Section 3, the Mel-scale Wiener filter 
and the proposed VAD are explained. Section 4 
presents the performance analysis of the proposed 
algorithm through experimental data, which shows its 
viability in real world applications. 

2. Background 

Speech enhancement systems may assume various 
structures depending on how enabling technologies 
are combined. Figure 1 shows the functional block 
diagram of a particular speech enhancement system, 
which mainly consists of a Wiener filter and a voice 
activity detector (VAD). This paper builds upon the 
structure in Fig. 1 and improves its performance by 
introducing a couple of novel concepts: Wiener filter- 
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( )yP : Noisy speech spectrum 
( )nP : Estimated noise spectrum 

Fig. 1. Functional block diagram for a speech enhancement 
system with a voice activity detector. 
 
ing in the Mel-scale and frequency-wise voice 
activity detection. The particular structure is chosen 
by virtue of its computational efficiency and superior 
performance. In the proposed structure, the stream of 
noisy speech data is first windowed, which is com-
monly denoted as a frame and is processed to ge-
nerate the power spectrum of the windowed speech 
data. Then, a VAD determines whether the frame 
contains speech or noise, using such criteria as short 
time energy level, zero crossing rate, etc. Whenever a 
data frame is classified as a “noise” frame, the “noise-
only” power spectrum is updated based upon the 
current and previous noise power spectra. Otherwise, 
a Wiener filter manipulates the noisy speech power 
spectrum and most up-to-date noise-only power 
spectrum estimate which in turn produces an 
enhanced speech. It should be noted in Fig. 1 that the 
frames are typically overlapped in order to ensure 
smooth transition. 

 
2.1 Existing voice activity detectors 

A VAD plays an important role in a speech en-
hancement system based on the Wiener filtering since 
the quality of the estimated noise power spectrum 
essentially determines the performance of the Wiener 
filtering (Deller et al., 1993). Although it may be 
carried out in a straightforward manner when no noise 
is present, the task of detecting speech activity under 
background noise does not render any readily 
deployable solution. Even when the background noise 
is negligible, the complex nature of speech signals 
makes it difficult to discern speech from noise, as 
explained in what follows. Speech can be classified 
into two distinct categories: ‘voiced’ and ‘unvoiced’. 
The voiced speech is generated through the vibrations 
of the vocal cord. Normally, the voiced speech is 
modeled as the output of a slowly time-varying linear 
system excited by a quasi-periodic pulse signal. On 
the contrary, the unvoiced speech does not require the 

vibrations of the vocal cord. The unvoiced speech is 
generated by forming a constriction at certain point in 
the vocal tract and passing air through the constriction 
at high velocity (Deller et al., 1993; Rabiner and 
Schafer, 1978). Spectral analysis shows that the for-
mer generally contains larger energy than the latter, 
while the latter exhibits more high frequency com-
ponents than the former. Among various criteria for 
speech activity detection such as the short time energy 
level, the zero-crossing rate and cepstral coefficients 
etc., an existing methodology described in this section 
relies on the short time energy level in combination 
with the zero-crossing rate, which are popularly 
employed in practice by virtue of their computational 
efficiency and straightforward implementation (Deller, 
et al., 1993). The short time energy level is suitable 
for voiced speech signal, while the zero-crossing rate 
is effective for unvoiced speech signal. The short time 
energy kE  and the zero-crossing rate kZ  in the 

thk  frame are given as 
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where it  is the time index from 1t  to Nt , ( )k ix t  is 
the sampled noisy speech signal at it  in the thk  
frame and N  is the number of samples in a frame. 
Once kE  and kZ  are computed, the following two 
criteria determine the presence of speech activity in 
the thk  frame when either one of the following two 
conditions is satisfied: 

 
,k k eE T   (3) 

, , , ,( ) ( ) 0,k k l k k h k l k hZ T Z T T T   (4) 

 
where ,k eT , ,k lT  and ,k hT  are the threshold on the 
energy, and the low and high thresholds on the zero-
crossing rate in the thk  frame,  respectively. The 
inequality (3) is based on the observation that speech 
has much more energy than noise. The inequality (4) 
comes from the fact that speech contains more high 
frequency components than noise, which results in 
higher zero-crossing rate (Deller et al., 1993). It must 
be noted that the success of the current speech  
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activity detection scheme relies heavily on ,k eT , ,k lT
and ,k hT . As a result, special attention must be paid to 
obtain their appropriate values. These thresholds are 
typically updated only when no speech activity is 
detected in the frame k  according to the following 
equations (Rabiner and Schafer, 1978):  

1, ,

1, , ,

1, , ,

(1 )
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(1 )

if
if

k e e k e e k

k l l k l l k k k l

k h h k h h k k k h
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where ep , lp  and hp  are forgetting factors (0< ep ,
lp , hp <1). When a frame contains speech, the 

thresholds ,k eT , ,k lT  and ,k hT  maintain values from 
the previous frame (Rabiner and Schafer, 1978). This 
existing approach detects the presence of speech fully 
in the time domain. Consequently, the detection re-
sults are obtained at the level of frames and ac-
cordingly the noise statistics are updated when an 
entire frame is detected as “noise”. 

It seems inevitable that a speech enhancement 
system with this type of VAD suffers from out-of-date 
noise statistics. Indeed, when the detection rate drops 
at low SNR, the effectiveness of the speech en-
hancement system with the VAD in this section turns 
out to be significantly degraded. Since the musical 
noise sprouts from the discontinuities during transi-
tion from one speech frame to the adjacent one, the 
noise power spectrum must be updated as often as 
possible (barring from computational burden) in order 
to reflect on the time-varying nature of the noise 
statistics and to provide the most accurate noise 
spectral information. 

2.2 Existing wiener filtering algorithms 

Speech is assumed to be corrupted by an uncor-
related additive noise (Martin, 1994). During the ini-
tialization period when no speech is present, a VAD 
estimates the noise power spectrum at each frequency 
in the frame. With the noise parameter at hand, the 
Wiener filtering is applied to the subsequent noisy 
speech. Summarizing the previous assumptions and 
formulations yields (Martin, 1994) 

( ) ( ) ( )k i k i k ix t s t n t   (6) 
( ) ( ) ( )k i k i k iX S N   (7) 

, , ,( ) ( ) ( )x k i s k i n k iP P P   (8) 

where ( )k ix t , ( )k is t  and ( )k in t  denote the sampled 
noisy speech signal, the sampled speech signal and 
the sampled noise signal in the thk  frame. kX , kS
and kN  are the short time Fourier transforms of kx ,

ks  and kn  in the thk  frame respectively. i  is the 
thi  frequency where 1, , 2 1i N  and sT  is 

the sampling rate. ,x kP , ,s kP  and ,n kP  are the 
power spectral densities (PSD) of kx , ks  and kn
in the thk  frame, respectively. Then, the Wiener 
filter kH  in the thk  frame is given as 

,

,

1 n k
k

x k

P
H

P
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Since the noise power spectrum ,n kP  is directly 
unavailable, the estimate of the noise PSD ,n kP
obtained by a VAD replaces ,n kP . Moreover, since 
the sudden change of the estimated noise PSD causes 
undesirable filtering results such as musical noise and 
speech distortion, it is computed recursively at each 
frequency between noise frames according to 

, , 1 ,( ) ( ) (1 ) ( )n k i n k i x k iP P P   (10) 

where  is a forgetting factor ranging generally 
from 0.9 to 0.98 (Martin, 1994 ). When the thk
frame contains speech, ,n kP  remains identical to 

, 1n kP . Since the power spectrum of the filtered 
speech signal is nonnegative, it seems reasonable to 
turn (9) into 

,

,

max{ 1 , 0 }n k
k

x k

P
H

P
  (11) 

However, it is well-known that the direct 
implementation of (11) inevitably introduces the 
musical noise (Berouti et al., 1979; Boll, 1979). This 
perceptually annoying noise is composed of tones at 
random frequencies and has an increasing variance, 
which is caused by the incorrect estimate of the noise 
power spectrum. In order to reduce the musical noise, 
the overestimation factor  and the spectral floor 

 are typically introduced (Berouti et al., 1979). The 
overestimation factor  overestimates the noise 
power spectrum and increases the amount of the noise 
power spectrum subtracted from the power spectrum 
of noisy speech at low SNR. As a result, the peaks of 
tones at random frequencies disappear to certain extent. 
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The spectral floor determines the noise level 
remaining in the filtered speech signal. Setting the 
spectral floor to a certain non-zero value leads to 
masking the tones at random frequencies. With the 
help of these two parameters, the peaks and the 
valleys existing randomly in the frequency domain 
disappear considerably, which results in the modified 
Wiener filter 

,
,

,

max{ 1 , }n k
k n k

x k

P
H P

P
  (12) 

In general,  is determined according to SNR in 
the thk  frame: k . For high SNR, k  is close 
to 1 so that the noise power spectrum is hardly 
overestimated. Otherwise, k  is much greater than 1 
and the noise power spectrum is considerably 
overestimated. However, such modification of the 
Wiener filter gives rise to another problem, speech 
distortion at low SNR, which is addressed in the 
following section. 

3. Mel-scale wiener filter with the frequency-
wise VAD 

Although the existing noise filtering approaches 
based on the Wiener filtering are easily implemented 
and effectively reduce the noise present in the 
corrupted speech signal, there still exist unresolved 
shortcomings: musical noise and speech distortion. 
While the former is the innate problem of the Wiener 
filter-based approach, the latter is a secondary pro-
blem stemming from an effort to reduce the musical 
noise. Excessive subtraction of the noise power 
spectrum would incur speech distortion, while in-
sufficient subtraction would leave the noise unfiltered. 
The better the noise power spectrum is estimated, the 
less the musical noise remains in the filtered speech 
spectrum and the less the speech distortion results. 
Yet, since the noise power spectrum may not be 
promptly updated in an existing VAD, there may exist 
significant gap between the estimated noise power 
spectrum and the instantaneous noise power spectrum 
in a given data frame, which causes isolated tones 
(musical noise) with large variance to appear at 
random frequencies. The problem of the musical 
tones is tackled in two steps: a new algorithm is first 
proposed for VAD that leads to more accurate and up-
to-date estimate of the noise power spectrum. Then, a 

novel Wiener filtering algorithm reduces the musical 
noise by performing filtering in the so-called Mel-
scale (Deller et al., 1993; Rabiner and Juang, 1993). 

3.1 Frequency-wise voice activity detector 

Existing VADs detect voice activity using time-
domain-based criteria such as the short time energy 
and zero-crossing rate. As a result, the detection is 
made on an individual time frame and correspon-
dingly existing Wiener filtering algorithms perform 
noise filtering according to the frame-based infor-
mation. Yet, it must be noted that even within the 
same frame, it is possible to contain speech and noise 
in certain frequency bands while pure noise occupies 
other frequency bands. In this respect, the changes in 
the noise statistics may not be updated on time based 
on the existing VADs. To overcome such a short-
coming, a novel VAD is proposed which detects the 
voice activity at each frequency within a given frame 
and, as a result, produces more up-to-date noise 
statistics or power spectrum. 

It is a reasonable assumption that there is only 
noise during initialization period and that the noise 
power spectrum at each frequency bin is an indepen-
dent and identical distributed (IID) random variable 
(RV) (Martin, 1994). The central limit theorem (CLT) 
states that the average of the noise power spectrum at 
each frequency bin becomes the Gaussian process as 
time goes on (Papoulis, 1981): for 1,2, ,j k  and 
IID RVs , ( )n j iP  (noise power spectrum at i ), 
their average , ,

1

1( ) ( )
k

n k i n j i
j

z P P
k
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approximated as an Gaussian RV with the mean m
and variance , given by 
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The probability density function (PDF) of the noise 
power spectrum at each frequency bin can be 
determined as 

2 2( ) / 21( ) .
2

z mf z e   (15) 

Equipped with the statistical characteristics of noise 
power spectrum described by the mean m  and 
variance , a novel scheme is proposed to detect 
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voice activity. During the initialization period from 
the 1st frame to the thk  frame, the mean and variance 
of the noise power spectrum at each frequency bin are 
calculated by (13) and (14). Though the average of 
the noise power spectrum can be approximated by a 
Gaussian RV, the power spectrum of the following 
frame even corresponding to noise may not be a 
Gaussian RV. Therefore, the threshold must cope with 
this irregularity and the threshold for detecting the 
presence of speech at the th( 1)k  frame is set by 

( ) ( ) ( )k i k i k iTh m   (16) 

where ( )k im  and ( )k i  are the mean and 
variance of the noise power spectrum at i  and 
is a constant larger than 1 to be determined. With this 
threshold, the new VAD detects the voice activity in 
the following manner. 

If the calculated power spectrum , 1( )x k iP  at i

in the th( 1)k  frame is larger than the threshold 
( )k iTh  at the corresponding frequency bin, this 

frequency bin is classified as speech. Otherwise, it is 
classified as noise. When noise is detected at some 
other frequencies, the corresponding noise power 
spectrum is updated at each frequency bin by  

, 1 , , 1( ) ( ) (1 ) ( )n k i n k i x k iP P P   (17) 

where  is a forgetting factor (<1) which guarantees 
the smoothed noise power spectrum and compensates 
for the uncertainty of the noise probability model 
(Berouti et al., 1979). When the speech is present, 
is set to be 1 in (17). Also, noise parameters such as 
the mean and variance of the noise power spectrum 
are is calculated by the following recursive equations 
(Papoulis, 1981) 
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P m
m m
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Compared with existing VADs, the proposed VAD 
can detect the voice activity in the frequency-wise 
manner even within a frame and provide more up-to-
date noise statistics crucial to the noise filtering 
algorithm. Furthermore, the frequency-wise VAD can 

offer various options to the noise filtering algorithm. 
Unlike the existing Wiener filters, the overestimation 
factor  and the spectral floor  in (12) may be 
chosen to be different at each frequency even within a 
frame so that ( )k i  and ( )k i . It should 
be noted that all these advantages do not entail any 
additional computational burden. The major com-
putational burden in the existing VAD is to compute 
the Eqs. (1) and (2), which amounts to O(6 )N  flops 
for the number of samples N  in a data frame while 
(16), (17) and (18) requires O(7 )N  flops in the 
proposed VAD. The order of the flops counts remains 
unchanged and the increase in computation burden is 
minimal, if at all, which does not affect the real-time 
realization of the proposed VAD. 

It is worthwhile to compare the proposed algorithm 
to the one based on the minimum statistics by Martin 
(Martin, 1994; Martin, 2001). It is based on the 
observation that the power spectrum of a noisy speech 
signal exhibits distinct peaks that correspond to 
speech and valleys that correspond to noise. It uses 
so-called the minimum floor to estimate the noise 
power spectrum and introduces a factor to reduce the 
bias between the true noise power spectrum and 
estimated noise power spectrum. However, for ra-
pidly varying noise, minimum statistics always shows 
undesirable bias and the effectiveness of estimation 
considerably diminishes. 

3.2 Wiener filtering in the Mel-scale 

Existing Wiener filters adopt the overestimation 
factor k  and the spectral floor  in order to re-
duce the musical noise. Since the peaks and the 
valleys in the estimated speech spectrum cause the 
musical noise, the overestimation factor k  tend to 
eliminate the broadband peaks, while the spectral 
floor  fills the valleys; they together render the 
residual noise “perceptually white” and create some 
masking effects (Berouti et al., 1979; Boll, 1979). 
Granted that they attenuate the musical noise to 
certain extent, these two parameters entail some 
undesirable side effects such as speech distortion. To 
reduce these side effects, the transfer functions of the 
Wiener filter are generally smoothed over the ad-
jacent noise frames in the existing approaches (Boll, 
1979; Martin, 1994): if at the frequency i , the 

th( 1)k , … th( )k q  frames are consecutively 
identified as noise frames, the smoothed Wiener filter 
in these frames becomes 
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1

(1 ) ,

, 1, , 1
k j k j k j k

k

H H H H

H j q
  (19) 

 
where 1k jH  and k jH  denote the smoothed Wie-
ner filters in the th( 1)k j  frame and the th( )k j , 
respectively (Martin, 1994). 1k jH  is the existing 
Wiener filter in the th( 1)k j  frame.  is a 
forgetting factor (<1). When the transfer function of 
the Wiener filter over the adjacent noise frames is 
smoothed, the variance of the Wiener filter transfer 
function is greatly reduced and the speech distortion 
will be somewhat lessened. However, this approach 
has its own limitation since the smoothing takes place 
only at the frequencies where the consecutive frames 
contain noise. 

In order to take advantage of the smoothing effect 
further, a novel idea of smoothing is proposed, where 
the smoothing is applied over the adjacent fre-
quencies in addition to adjacent frames. The proposed 
idea utilizes the psychophysical characteristics of the 
human auditory system, which is known to respond in 
the Mel-scale. The Mel-scale is the frequency scale 
that approximates the sensitivity of the human 
auditory system to differences in two frequencies. It is 
well-known that the human auditory system exhibits 
varying sensitivity to the frequency difference as the 
frequency changes (Deller et al., 1993; Rabiner and 
Schafer, 1978; Rabiner and Juang, 1993). The relation 
between the Mel-scale and the physical frequency is 

 

1127 ln(1 )
700Mel

ff   (20) 

 
where Melf  denotes the Mel-scale and f  denotes 
the physical frequency (Deller et al., 1993). This 
relation shows that the mapping from the physical 
frequency to the Mel-scale is approximately linear 
below 1000 Hz and logarithmic above that frequency. 
In order to better understand the Mel-scale, two 
exemplary cases are shown in Fig. 2: one when the 
frequency changes from 500 Hz to 1000 Hz and the 
other when the frequency changes from 3000 Hz to 
3500 Hz. Even though the difference between two 
changes is identical in terms of a linear scale, a 
human being perceives two cases differently. Actually 
a human being discriminates two frequencies in the 
first case better because the difference in the first case 
is larger than in the second case in the Mel-scale. 
Such an observation leads to an idea that the 
perceptual quality of the filtered speech may be enhan- 
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Fig. 2. Relation between Mel scale and the physical frequency. 

 

 
Fig. 3. Frequency response of the Mel-filter bank. 
 
ced by smoothing the transfer function over the 
adjacent frequencies where Mel-scales are similar. 

Suppose that m  and sT  are the number of Mel-
filters in the filter bank and the sampling rate. The 
first step is to calculate ( 2)Mel sf T  Mel that is 
equivalent to the frequency band of interest 2sf T  
by using the Eq. (20) and then, divide the Mel-scale 
frequency band up to ( 2)Mel sf T  into m  sub-bands 
of the same length, where the center of each sub-band 
is equal to the Mel-scale center frequency c

Melf  of 
the Mel-filter in the filter bank. Finally, these Mel-
scale center frequencies c

Melf  are transformed into 
the general center frequencies cf  by using the 
conversion formula derived from the Eq. (20), that is, 

700 exp 1127 1c c
Melf f  and as a result, the 

multiple sub-frequency bands jB , 1j , , m  
are obtained: for each sub-band jB , the Mel-filter 

jf  is designed to have a triangle band-pass 
frequency response as shown in Fig. 3, which 
corresponds to the case of m =12 and sT =5.5 kHz. 
Note that there is an overlap between adjacent sub-
bands jB  and 1jB  to minimize the energy loss and 
to guarantee the smooth transition. The bandwidth of 
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the Mel-filter becomes large as the physical frequency 
increases because a human auditory system is more 
sensitive at lower frequency in the Mel-scale. The 
first and last windows assure special shapes to 
minimize the energy loss. Then, the Mel-scale-based 
averaging operator _Mel f  for any frequency 
response h  with i jB , for some {1, , }j m
may be defined by 

1
_ ( )( ) ( ) ( )

i j

i j i i
i

B

Mel f h f h   (21) 

From (12), (19) and (21), the Mel-scale Wiener filter 
in the thk  frame is given as follows 

ˆ _ .k kH Mel f H   (22) 

Recall that the frequency-wise VAD enables the 
overestimation factor k  to be and the spectral floor 

k  to be functions of the frequency even within the 
same frame, i.e., ( )k i  and ( )k i .

The following steps summarize the Mel-scale 
Wiener filtering algorithm in conjunction with the 
proposed VAD. 

[Initialization] 
[I1]: Determine the sampling rate sT , the number 

of samples N  in a frame,  (>1) in (16), the 
forgetting factors  (<1) in (17) and  (<1) in 
(19) and the number of sub-frequency band m .
Design the Mel-filter jf , 1j , , m  with a 
triangular bans-pass response as shown in Fig. 3. 

[I2] Based on the assumption that only noise is 
present during the initialization period from the 1st

frame to the thk  frame, calculate the power spectra 
,1( )x iP , , , ( )x k iP  at each frequency i ,
1, ,( 2 1)i N . Recall that there is 50 % overlap 

between adjacent frames. 
[I3] The estimate of noise power spectrum 
,1( )n iP  is equal to ,1( )x iP  and , ( )n k iP  is 

computed recursively according to (17) with ,1( )n iP ,
,2 ( )x iP , , , ( )x k iP . Then, calculate the mean 
( )k im  and variance ( )k i  of noise power 

spectrum by (13) and (14) and construct the threshold 
( )k iTh .

[Recursion]
[Step 1]: With 50 % overlap, calculate the power 

spectrum , 1( )x k iP  of the th( 1)k  frame. 

[Step 2]: By comparing , 1( )x k iP  with the 
threshold ( )k iTh , determine whether the spectrum 

, 1( )x k iP  at each frequency i  contains speech or 
not. , 1( ) ( )k i x k iTh P  implies that voice is present 
at the frequency i  for some {1, ,( 2 1)}i N .

[Step 3]: For each frequency i  where no speech 
is present, the noise power spectrum , 1( )n k iP  is 
updated with , ( )n k iP  in the I3 step and 

, 1 , 1( ) ( )n k i x k iP P  according to (17). Then, the 
mean 1( )k im  and variance 1( )k i is calculated 
recursively by (18) and the new threshold 1( )k iTh
for the next frame is obtained. 

[Step 4]: For frequencies where speech is present, 
, 1( )n k iP  and 1( )k im  are set equal to , ( )n k iP

and ( )k im .
[Step 5]: Determine the overestimation factor 

1( )k i  and the spectral floor 1( )k i  differently 
at each frequency i  considering the presence of 
speech and the SNR. 

[Step 6]: Construct the Wiener filter 1kH  at each 
frequency i  using (12) based on 1( )k i ,

1( )k i  and , 1( )n k iP  (obtained in Step 2) and set 
1kH  to 1kH  in (19). Note that from Step 1 to Step 

7, the smoothed Wiener filter is calculated using (19) 
only for the frequency containing consecutively the 
noise component. 

[Step 7]: Using the Mel-filter designed in the 
initialization step I1, establish the Mel-Scale Wiener 
filter 1

ˆ
kH  from 1kH  in Step 6 by (21) and (22). 

Obtain the filtered signal by applying the Mel-Scale 
Wiener filter 1

ˆ
kH  to the th( 1)k  frame. Recall 

that the filtered signal has the delay corresponding to 
50 % overlap, which is tunable by changing the 
overlap size between the adjacent frames. Move to 
the th( 2)k  frame with 50 % overlap and return to 
Step 1.

4. Performance analysis 

The performances of the proposed VAD and the 
Mel-scale Wiener filter are evaluated in this section. 
Since the performance of the Mel-scale Wiener filter 
depends on that of the VAD, the proposed VAD is 
considered first. The proposed VAD determines the 
presence of speech at the frequency level within a 
given data frame, enabling the frequency-wise 
updates of noise statistics while existing VADs 
distinguish between speech activity and pause on the 
entire data frame so that noise statistics are updated 
only at the frame level. An idea based on the minimum  
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Fig. 4. The power spectrum of automobile interior noise. 
 

 
(a) 

 
(b) 

Fig. 5. Real and estimated noise power spectra using the 
proposed voice activity detector: (a) i =320 Hz  (b) 

i =925 Hz. 
 
statistics by Martin (Martin, 1994; Martin, 2001) is 
quite similar to the proposed VAD in that it also 
handles the noise power spectrum during speech 
activity. It is conceptually simple and suited for the 
real-time implementations. However, it needs to 
compensate for the bias of the estimated noise power 
spectrum since the minimum of the estimated noise 
power spectrum is typically smaller than the true one. 
As a result, it tends to suffer from the non-stationary 
noise. Since the accuracy of the estimated noise power 

 
(a) 

 
(b) 

Fig. 6. Real and estimated noise power spectra using 
minimum statistics (a) i = 320 Hz (b) i = 925 Hz. 
 
spectrum is essential to the noise filtering algorithm 
incorporated with the VAD, the per-formance of the 
proposed VAD is evaluated in the light of its 
capability of capturing the spectral characteristics of 
noise, specifically the noise power spectrum. 

The performance of the proposed VAD is compared 
with that of the minimum statistics by Martin using 
the automobile interior noise. The automobile interior 
noise is collected while driving the car at 60 km/hour 
on a high way (approximately 14 seconds) at the 
sampling rate 5.5 kHz. The number of samples in a 
data frame is 256 (about 30 ms) and there is 50 % 
overlap between the adjacent frames. Figure 4 shows 
the power spectrum of the automobile interior noise 
with respect to the data frame index. As shown in Fig. 
4, the automobile noise has significant power in the 
low frequency range (below 500 Hz). The proposed 
VAD estimates the noise power spectrum following 
Steps 1, 2, 3 and 4 after initialization steps I1, I2 and 
I3 as described in Section 3. It is noted that the noise 
power spectra using the proposed VAD and the 
minimum statistics are overestimated by the over-  
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Fig. 7. The overestimation factor  as a function of SNR. 

 
estimation factor ( )k i  in Fig. 7. Figures 5 and 6 
show the traces of the noise power spectra at 320 Hz 
and 925 Hz estimated using the proposed VAD and 
the minimum statistics, respectively. The noise power 
spectrum at 320 Hz manifests the non-stationary 
nature of the automobile noise with the maximal 
variation of 15.5 dB, while the one at 925 Hz seems 
to remain quite stationary at much lower power level. 
The solid and dashed lines in Fig. 5 and 6 denote the 
overestimated and real noise power spectra. Since the 
noise power spectrum is overestimated, the solid line 
must always lie above the dashed one. Otherwise, the 
probability of the false detection increases, i.e., the 
noise component may be mistaken for speech 
component. It is obvious that at both 320 Hz and 925 
Hz, the proposed VAD tracks the noise profile much 
better than the minimum statistics. It must be spe-
cially noted that despite some delays and errors in 
certain frames, the proposed VAD provides the 
estimated noise spectrum that tracks the true noise 
spectrum at 320 Hz much better, which shows how 
well the proposed VAD performs under the rapidly 
varying noise. In Fig. 6(a), it is observed that the 
estimated noise power spectrum sometimes lies 
below the true one, which results in the underesti-
mated noise power spectrum that may cause false 
detection of speech activity. Although it outperforms 
the one based on the minimum statistics at both 320 
Hz and 925 Hz, the tracking capability of the 
proposed VAD becomes more pronounced at the high 
noise level or low SNR (320 Hz), which implies that 
the proposed VAD works well even under the low 
SNR situation. Compared with Figs. 5(a) and (b), 
Figs. 6(a) and (b) indicate that the estimated noise 
power spectra based on the minimum statistics 
deviate from the true one to much larger extent. As a 
result, it may be deduced that the excessive over-

estimation of the noise power spectrum with mini-
mum statistics inevitably degrades the quality of the 
filtered speech signal, granted that the overestimation 
is essential to certain extent. 

Now equipped with the proposed VAD, the per-
formance of the Mel-scale Wiener filter is established 
with two types of experimental data. The first set 
consists of synthesized noisy speech signals that are 
artificially generated by adding the independently 
collected automobile interior noise to the clean speech. 
The second set consists of noisy speech signals 
collected in an automobile cabin while the vehicle 
speed is marked at 60 km/hour. For the first set, the 
speech signals and the automobile noise are obviously 
uncorrelated while the same may not be true for the 
second one. Yet, the performance analysis with these 
two sets of experimental data must shed light on the 
viability of the proposed algorithm in practice. 

The experimental data are again sampled at the 
sampling rate of 5.5 kHz. The number of samples N  
in a data frame is 256 and the total duration of 
experimental data is 9 seconds. The overestimation 
factor ( )k i varies within a frame, depending on 
whether a frame contains speech or noise at a given 
frequency. Figure 7 shows the overestimation factor 
as a function of SNR. The solid and dashed lines 
denote the overestimation factors for speech and 
noise, respectively. The overestimation factor ( )k i  
for speech is smaller and shifted to the higher 
frequency in order to minimize the speech distortion 
by preventing the excessive subtraction of noise 
power spectrum. The spectral floor ( )k i  is set to 
0.001 over the entire frequency range and data frames. 

In order to evaluate the performance of the Mel-
scale Wiener filter in conjunction with the proposed 
VAD, several measures are introduced: segmental/ 
overall SNRs and Itakura measure (Deller et al., 
1993). The segmental/overall SNRs are defined as 
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where ( )is t  and ˆ( )is t  denote the clean and filtered 
speech, respectively. over

sE  and over
nE  represent the 

energies of clean speech and noise over the entire 
frames. 0m , 1m ,…, 1Mm  are the ending time 

index for the M  frames, each with N  samples. 
The segmental/overall SNRs provide indicators for 
average errors over time and frequency for a filtered 
signal. Note that the SNR of -10 dB represents rather 
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Fig. 8. Synthesized speech signal: (a) clean speech (b) clean speech + noise (c) filtered speech with the existing Wiener filtering
(d) filtered speech with the Mel-scale Wiener filtering. 
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harsh conditions unlikely to occur often in the real-
world applications. On the other hand, at the SNR of 
10dB, the speech quality may be acceptable even 
without a speech enhancement. For most applications, 
the input SNR lies between -5~5 dB ranges. Yet, 
another measure, the segmental/overall Itakura 
measures, are introduced. Let 22 ( )c cA  and 

22 ( )f fA  represent the power spectra of the clean 
and filtered speech signals, which are all assumed to 
be modeled as autoregressive models (AR) ( )A z .
The Itakura measure [0] is given by  

22

2 2

22 2

2 22

( , )
( ) ( )

( )1 ln 1
2 ( )

fc
IS

c f

c c c

ff f

d
A A

A
d

A

  (25) 

where 
1

( ) ( ) 1 ( ) , ( )j

P
j

c c c fz e
i

A A z a i e A

1
( ) 1 ( )j

P
j

f fz e
i

A z a i e . 2
c  and 2

f , ( )ca i

and ( )fa i  are the gains and thi  LPC prediction 

coefficients of two P-order LPC models, respectively. 
The segmental Itakura measure is calculated on a 
given frame while the overall Itakura measure is over 
the whole frames. The Itakura measure is sensitive to 
variations in speech spectrum and, as a result, is 
heavily influenced by the spectral dissimilarity due to 
mismatch in formant locations, whereas errors in 
matching spectral valleys do not contribute signi-
ficantly to the measure. Such a property is highly 
desirable because the auditory system is more 
sensitive to errors in formant location and bandwidth 
than to the spectral valleys between peaks. 

The SNR of a synthesized speech signal is 0.55 dB. 
Figures 8(a), (b), (c) and (d) show in the time domain 
the clean and synthesized speeches, the filtered 
speech signals via an existing and Mel-scale Wiener 
filters, respectively. It is obvious that the filtered 
speech signal via the Mel-scale Wiener filter looks 
most similar to the clean speech. Over the time 
intervals where only the noise is present such as over 
the initial 1.5 sec interval, both Wiener filtering 
algorithms seem to perform reasonably well. 
However, the advantage of the Mel-scale Wiener 
filter becomes obvious at other time intervals when 
the speech signal is active. Note that the clean speech 
signal in the time intervals from 3.5 sec to 4 sec and 

from 7.6 sec to 8.4 sec (indicated by rectangles) is 
completely inundated by the automobile noise, which 
makes it difficult to detect the presence of the speech 
with the naked eye or through the hearing test. 
Although the speech volume has decreased, the Mel-
scale Wiener filter separates the speech signal from 
the background noise much better than the exiting one.
Table 1 summarizes the segmental/overall SNRs and 
the Itakura distance measures between the clean and 
filtered speech signals. Recall that the high overall/ 
segmental SNR and the low overall/segmental Itakura 
measures imply the better performance of the filtering 
algorithm. Compared with an existing Wiener filter, 
the Mel-scale Wiener filter noticeably enhances the 
quality of the noisy speech signal; the overall SNR 
improvement (=8.58 dB) via the Mel-scale Wiener 
filter are larger than that (=4.47dB) via an existing 
Wiener filter. The worst (=0.77 dB) and the best 
(=12.7 dB) segmental SNR improvements via the 
proposed Wiener filter outnumber those (-1.27 dB 
and 11.3 dB, respectively) via an existing Wiener 
filter. In addition, the segmental/overall Itakura mea-
sures demonstrate that the Mel-scale Wiener filtering 
excels in reproducing the clean speech as well as 
eliminating noise from the noisy speech signal. 
Compared with the existing Wiener filtering that 
accompanies the annoying musical noise indicated by 
the circles in Fig. 8(c), the Mel-scale Wiener filtering 
provides considerable reduction in musical noise and 
much smooth transition in Fig. 8(d). 

To confirm the capability of the proposed Wiener 
filter under a real-world situation, the performance 
analysis through a real noisy speech signal follows. 

Table 1. Segmental/overall SNRs and Itakura measures of the 
Mel-Scale Wiener filtering and existing Wiener filtering. 

Mel-Scale Wiener 
filtering

Existing Wiener 
filtering

Min Mea
n Max Min Mea

n MaxSegment
al 

SNR(dB) 0.77 8.05 12.7 -
1.23 5.58 11.3

Overall 
SNR(dB) 8.58 4.47 

Min Mea
n Max Min Mea

n MaxSegment
al Itakura 
measure 0.10 2.39 17.2 0.31 4.06 26.2

Overall 
Itakura 
measure 

2.37 4.03 
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Figure 9(a) shows a real noisy speech signal in time 
domain. Figures 9(b) and (c) shows the filtered 
speech signals obtained from an existing and Mel-
scale Wiener filters, respectively. In comparison with 
the synthesized noisy speech signal in Fig. 8(b), the 
real noisy speech signal seems to be collected at 

lower SNR and it is expected that the filtering results 
may be poor. At the time intervals corresponding to 
the relatively high SNR (indicated by the rectangles), 
it is obvious that both algorithms successfully se-
parate speech from noise. However, at the low SNR 
conditions, Fig. 9(b) and (c) shows that the musical  
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Fig. 9. Real speech signal: (a) noisy speech (b) filtered speech with the existing Wiener filtering (c) filtered speech with the
Mel-scale Wiener filtering. 
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noise is present in the existing Wiener filtering while 
it is completely eliminated through the Mel-scale 
Wiener filtering. These observations are explicitly 
confirmed from Fig. 10(a) and (b) which show the 
corresponding spectrograms of filtered speech signals 
in Fig. 9(b) and (c), respectively. As shown in the 
time intervals from 0.7 sec to 0.8 sec, from 0.9 sec to 
1.1 sec and from 1.6 sec to 1.8, the proposed Mel-
scale Wiener filter successfully mitigates the musical 
noise widely spread in the existing Wiener filter 
without decreasing the energy level of the filtered 
speech signal. Since a clean speech signal cannot be 
completely separated from a real noisy speech signal 
as in the synthesized speech, the informal listening 
tests by several listeners are conducted, which show 
that the Mel-scale Wiener filter attenuates the noise 
considerably while minimizing the speech distortion. 
The previous two experiments exemplifies that the 
Mel-scale Wiener filtering improves the efficiency of 
the existing Wiener filtering by eliminating the 

residual noise and decreasing the speech distortion. 
 

5. Conclusion 

In this paper, new approaches for speech enhance-
ment in an automobile cabin are presented: the Mel-
scale Wiener filter and the frequency-wise voice 
activity detector. Through smoothing over the ad-
jacent frequencies, the Mel-scale Wiener filter based 
on the characteristics of a human auditory system 
improves upon an existing Wiener filter that exhibits 
an inevitable nuisance, “musical noises”. For the 
more up-to-date and accurate estimate of noise 
statistics, the frequency-wise voice activity detector 
detects the presence of speech not at the frame level 
but at the frequency level within a data frame so that 
the detection error may decrease and provide more 
accurate information on the noise power spectrum, 
which plays an important role in the Mel-scale 
Wiener filtering. The proposed VAD is shown to 

(a) 

 
(b) 

Fig. 10. Spectrograms of (a) filtered speech with the existing Wiener filtering (b) filtered speech with the Mel-scale Wiener
filtering. 
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detect the presence of the speech signal successfully 
even at low SNR and under the rapidly varying noise, 
while computational complexity remains acceptable. 
Combined with the proposed VAD, the Mel-scale 
Wiener filter is shown to reduce the musical noise and 
result in smooth transition over adjacent frames 
without distorting the speech quality. The proposed 
approach has demonstrated its viability in practice 
through extensive experiments, which will lead to its 
deployment in the commercial speech enhancement 
system in an automobile cabin. It goes without saying 
that the same idea has potential to impact the speech 
recognition systems and hands-free devices in an 
automobile cabin. 
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